Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 348: 123867, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556151

RESUMO

A comprehensive understanding of the characteristics of biochar released-dissolved organic matter (BDOM) derived from an invasive plant and its impact on the binding behavior of pharmaceuticals is essential for the application of biochar, yet has received less attention. In this study, the binding behavior of BDOM pyrolyzed at 300-700 °C with sulfathiazole, acetaminophen, chloramphenicol (CAP), and carbamazepine (CMZ) was investigated based on a multi-analytical approach. Generally, the pyrolysis temperature exhibited a more significant impact on the spectral properties of BDOM and pharmaceutical binding behavior than those of the molecular weight. With increased pyrolysis temperature, the dissolved organic carbon decreased while the proportion of the protein-like substance increased. The highest binding capacity towards the drugs was observed for the BDOM pyrolyzed at 500 °C with the molecular weight larger than 0.3 kDa. Moreover, the protein-like substance exhibited higher susceptive and released preferentially during the dialysis process and also showed more sensitivity and bound precedingly with the pharmaceuticals. The active binding points were the aliphatic C-OH, amide II N-H, carboxyl CO, and phenolic-OH on the tryptophan-like substance. Furthermore, the binding affinity of the BDOM pyrolyzed at 500 °C was relatively high with the stability constant (logKM) of 4.51 ± 0.52.


Assuntos
Matéria Orgânica Dissolvida , Pirólise , Temperatura , Peso Molecular , Carvão Vegetal/química , Substâncias Húmicas/análise , Proteínas , Preparações Farmacêuticas
2.
Huan Jing Ke Xue ; 44(11): 6159-6171, 2023 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-37973099

RESUMO

Microplastic-derived dissolved organic matter(MPDOM) during the aging process could be complexed with organic pollutants, heavy metals, and other contaminants and thus affect their migration and transformation. In this study, two types of microplastics, polyethylene terephthalate(PET) and polystyrene(PS), were selected to investigate the spectral properties of MPDOM and their effect on the complexation between MPDOM and sulfadiazine(SDZ)/copper ion(Cu2+) using the fluorescence quenching method, various spectroscopic analysis techniques, and the Ryan-Weber quenching model. The results of UV-vis absorption spectroscopy analysis showed that the molecular weight of the two MPDOMs decreased; the aromaticity and humification increased; and the carboxyl, carbonyl, hydroxyl, and ester substituents on aromatic rings increased after aging. The fluorescence quenching process between MPDOM and SDZ/Cu2+ was static quenching. After quenching, the aromaticity and humification of the two MPDOMs were similar, and the molecular weights were comparable. Combined with three-dimensional fluorescence spectra and parallel factor analysis, two humic-like components and one protein-like component were identified. In addition, the protein-like components of MPDOM reacted preferentially with SDZ and were more sensitive to Cu2+. The results of the Ryan-Weber quenching model revealed that the binding ability of humic-like components to PET-DOM was higher in both SDZ and Cu2+ quenching systems, but the binding ability of MPDOM in the SDZ quenching system was generally stronger than that in the Cu2+ system.

3.
Chem Commun (Camb) ; 59(93): 13871-13874, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37933483

RESUMO

Red-emitting carbon dots from pyrolysis of citric acid in formamide, which are intrinsically water-insoluble, were solubilized and stabilized by the fluorescent micelles formed by a nonionic silicone surfactant and an anionic surfactant, leading to the formation of full-color-emitting colloids with good biocompatibility and a variety of potential applications.

4.
Small ; 19(33): e2301240, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37086135

RESUMO

Room temperature phosphorescence (RTP) materials have drawn considerable attention by virtue of their outstanding features. Compared with organometallic complexes and pure organic compounds, carbon dots (CDs) have emerged as a new type of RTP materials, which show great advantages, such as moderate reaction condition, low toxicity, low cost, and tunable optical properties. In this review, the important progress made in RTP CDs is summarized, with an emphasis on the latest developments. The synthetic strategies of RTP CDs will be comprehensively summarized, followed by detailed introduction of their performance regulation and potential applications in anti-counterfeiting, information encryption, sensing, light-emitting diodes, and biomedicine. Finally, the remaining major challenges for RTP CDs are discussed and new opportunities in the future are proposed.

5.
Chem Commun (Camb) ; 59(24): 3558-3561, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36880229

RESUMO

By using the intrinsic nonconventional photoluminescence (n-PL) of organo-siloxane and the synergetic effect of the surfactant mixture, we report strong n-PL from aqueous colloids containing a nonionic silicone surfactant mixed with a traditional anionic surfactant, with an unprecedently high fluorescence quantum yield of up to 85.58%.

6.
Nanoscale ; 15(1): 275-284, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36477704

RESUMO

Carbon dots (CDs) have developed into an important class of nanomaterials that have attracted increasing attention during the past decades. Despite numerous types of CDs reported to date, research on their self-assembly is still limited. Herein, we report for the first time the self-assembly of CDs in water, which show concentration-dependent aggregation behavior. The CDs used have a structural motif of a fully carbonized core surrounded by a highly condensed, polymeric network, to which triethylene glycol monomethyl ether (TGME) chains are grafted. When dissolved in water, they show a low critical aggregation concentration (cac) of 0.07 mg mL-1 with the lowest surface tension of ∼37 mN m-1. Above this cac, nanoclusters and vesicles are observed at relatively low and high concentrations, respectively. At an intermediate concentration, polymorphism is noticed where nanotubes coexist with nanorods. At an elevated temperature, the CDs become more hydrophobic due to the dehydration of peripheral TGME, which decreases the cac and triggers phase transfer from water to toluene. These surface active CDs were used to disperse and stabilize multi-walled carbon nanotubes in water, which showed much better performance than that of both traditional ionic and nonionic surfactants. Our work indicates that with a careful structural design, CDs can be developed into a new type of amphiphiles with properties superior to those of traditional surfactants in specific aspects.

7.
Soft Matter ; 18(29): 5380-5387, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35789359

RESUMO

Lanthanide-containing, water-based fluids normally suffer from low photoluminescent (PL) and/or colloidal stability, which greatly hinders their applications. Herein, we report the preparation of PL fluids which contain in situ formed europium complexes in aqueous solution. The strategy first relies on the construction of wormlike micelles by mixing a zwitterionic surfactant (tetradecyldimethylaminoxide, C14DMAO) and a tridentate ligand for a lanthanide cation (2,6-dipicolinic acid, DPA) in water. The addition of the dual-functionalized DPA to an aqueous solution of C14DMAO (100 mol L-1) induced non-monotonic rheological changes, with the expected formation of a pseudogemini surfactant at a DPA-to-C14DMAO molar ratio of approximately 1 : 2. When a third component of EuCl3 is introduced to this system, complexes formed in situ between Eu3+ and DPA, resulting in bright red-emission. Besides DPA, C14DMAO is also involved in the complexation, which squeezes out water molecules and greatly improves the PL stability of the fluid. The synergetic effect among Eu3+, DPA and C14DMAO leads to the high colloidal stability of the fluid, opening the door for a wide range of potential applications. Further tests indicate that this strategy can be easily expanded to other lanthanide cations such as Tb3+.

8.
Materials (Basel) ; 12(21)2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31690002

RESUMO

The tortuosity of the pore structure is an important factor affecting medium (water and harmful ions) transport in cement-based materials. In this study, a new tortuosity model was established to reveal the effect of aggregate size, morphology, and graded media on the transport path in cement-based materials. Based on the stereological principle and the geometric algorithm, the distribution model of the ideal pebble and polygonal aggregate in cement-based materials was given first. Then, based on the image processing technology and MATLAB software, the morphology of the actual aggregate was also characterized to prove the similarity relationship between the ideal aggregate and actual aggregate. The reliability of the tortuosity model was verified by the mercury intrusion porosimetry test and data from other literature. Based on the tortuosity model, the influences of the aggregate particle shape parameters, hydration degree, and water-to-cement ratio on the tortuosity of the transport path were analyzed. Finally, the tortuosity model was further simplified to facilitate engineering application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA